Package: dataframeexplorer 1.0.2
dataframeexplorer: Familiarity with Dataframes Before Data Manipulation
Real life data is muddy, fuzzy and unpredictable. This makes data manipulations tedious and bringing the data to right shape alone is a major chunk of work. Functions in this package help us get an understanding of dataframes to dramatically reduces data coding time.
Authors:
dataframeexplorer_1.0.2.tar.gz
dataframeexplorer_1.0.2.zip(r-4.5)dataframeexplorer_1.0.2.zip(r-4.4)dataframeexplorer_1.0.2.zip(r-4.3)
dataframeexplorer_1.0.2.tgz(r-4.4-any)dataframeexplorer_1.0.2.tgz(r-4.3-any)
dataframeexplorer_1.0.2.tar.gz(r-4.5-noble)dataframeexplorer_1.0.2.tar.gz(r-4.4-noble)
dataframeexplorer_1.0.2.tgz(r-4.4-emscripten)dataframeexplorer_1.0.2.tgz(r-4.3-emscripten)
dataframeexplorer.pdf |dataframeexplorer.html✨
dataframeexplorer/json (API)
# Install 'dataframeexplorer' in R: |
install.packages('dataframeexplorer', repos = c('https://ashrithssreddy.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 3 years agofrom:59a66c61dc. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 19 2024 |
R-4.5-win | OK | Nov 19 2024 |
R-4.5-linux | OK | Nov 19 2024 |
R-4.4-win | OK | Nov 19 2024 |
R-4.4-mac | OK | Nov 19 2024 |
R-4.3-win | OK | Nov 19 2024 |
R-4.3-mac | OK | Nov 19 2024 |
Exports:detect_const_colsdetect_dupl_colsfrequency_tableglimpse_to_filelevel_of_datapercentiles_table
Dependencies:clicpp11data.tabledplyrfansigenericsgluelifecyclemagrittropenxlsxpillarpkgconfigplyrpurrrR6Rcpprlangstringistringrtibbletidyrtidyselectutf8vctrswithrzip
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Detect if any column of a data.frame has constant values. | detect_const_cols |
Detect if any column of a data.frame is a duplicate of another | detect_dupl_cols |
Generate frequency of each entry in each column of dataframe | frequency_table |
Generate glimpse of dataset | glimpse_to_file |
Determine the level / primary key of dataset | level_of_data |
Generate percentiles for entire dataframe | percentiles_table |